Ваш любимый книжный интернет-магазин
Перейти на
GlavKniga.SU
Ваш город: Алматы
Ваше местоположение – Алматы
 Да 
От вашего выбора зависит время и стоимость доставки
Корзина: пуста
Авторизация 
  Логин
  
  Пароль
  
Регистрация  Забыли пароль?

Поиск по каталогу 
(строгое соответствие)
ISBN
Фраза в названии или аннотации
Автор
Язык книги
Год издания
с по
Электронный носитель
Тип издания
Вид издания
Отрасли экономики
Отрасли знаний
Сферы деятельности
Надотраслевые технологии
Разделы каталога
худ. литературы

Robust Random Regression Imputation for Missing Data. English

В наличии
Местонахождение: АлматыСостояние экземпляра: новый
Бумажная
версия
Автор: Ahamefule Happy John,Sohel Rana and Habshah Midi
ISBN: 9783659111969
Год издания: 2015
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 164
Издательство: LAP LAMBERT Academic Publishing
Цена: 45585 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:
Код товара: 112659
Способы доставки в город Алматы *
комплектация (срок до отгрузки) не более 2 рабочих дней
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK)
Курьерская доставка CDEK из города Москва
Доставка Почтой России из города Москва
      Аннотация: I have written this book for those students studying statistics and mathematics.The need for this book as become apparent in many years with several students having only classical back ground. We consider when it missing in Y,The aim of this book is to help in solving the problem when missing in both side and outliers exist.This book proposes simple but very interesting robust single imputation technique which gives more accurate estimates over the classical single imputation technique in the presence of outliers. we also considered a situation in which observations are missing in the X explanatory variable. In this respect, the Dummy Variable (DV) approach is one of the best approaches to predict the missing data model. However, this approach also becomes poor in the presence of outliers. As an alternative, Robust Inverse Regression Technique is proposed to get the better estimate. By examining the real data and Monte Carlo Simulation studies, it revealed that our proposed robust methods perform better than the classical methods.
Ключевые слова: missing data, Regression and outliers