Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Query Focused Language Independent Multi-document Summarization. And Information Retrieval for English and Bengali
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Pinaki Bhaskar
ISBN: 9783848400898
Год издания: 2013
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 164
Издательство: LAP LAMBERT Academic Publishing
Цена: 42391 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:Код товара: 112822
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: A query focused multi-document automatic summarizer has been described. The system clusters similar texts in multiple related documents having related (sub) topical features. A document graph is constructed, where nodes are sentences and edge scores reflect correlation measure between nodes. Then clusters are constructed from the graph. Each cluster gets a weight and has a cluster center. Next, query dependent weights for each sentence are added to the edge score as well as to the cluster score. Top ranked sentence of each cluster in order is identified for inclusion in the output summary. It was tested on the standard TAC (formerly DUC) 2008 data sets of the Update Summarization Track and evaluated by ROUGE 1.5.5 where ROUGE-2 and ROUGE–SU-4 scores of 0.103 and 0.14 have been obtained. Then the experiments carried out at Jadavpur University as part of the participation in FIRE 2010 in the ad-hoc mono-lingual information retrieval task for English and Bengali languages, has been described. The experiments are based on stemming, zonal indexing, theme identification, TF-IDF based ranking model and positional information. Each query was specified using title, narration and description
Ключевые слова: Information Retrieval, Information Extraction, Multi-document Summarization, Computational Linguistics, Natural Language Processing