Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Genetic Fuzzy Controllers for Complex Production Systems. Using Genetic Algorithms to Optimize Fuzzy Logic Controllers
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: S. Mahdi Homayouni and S. H. Tang
ISBN: 9783659279119
Год издания: 2013
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 160
Издательство: LAP LAMBERT Academic Publishing
Цена: 45443 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Improvement in the performance of production control systems is so important that many of past studies were dedicated to this problem. The applicability of fuzzy controllers in production control systems has been shown in literature. Furthermore, genetic algorithm has been used to optimize the FLCs performance. In this study, the GFLC methodology is used to develop two production control architectures named “genetic distributed fuzzy”, and “genetic supervisory fuzzy” controllers. These control architectures have been applied to single-part-type production systems. In their new application, the GDF and GSF controllers are developed to control multi-part-type and re-entrant production systems. In multi-part-type and re-entrant production systems the priority of production as well as the production rate for each part type is determined by production control systems. The objective function of the GSF controller is to minimize the overall production costs based on work-in-process (WIP) an d backlog cost, while surplus minimization is considered in GDF controller. The results indicate a great improvement in performance of heuristic controllers regarding the production costs.
Ключевые слова: genetic algorithm, Production Systems, Fuzzy Controllers