Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Recent Advances In Intrusion Detection. Improving Effectiveness Of Intrusion Detection By Feature Reduction Using LDA
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Rupali Pathak
ISBN: 9783659291463
Год издания: 2013
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 72
Издательство: LAP LAMBERT Academic Publishing
Цена: 25408 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:Код товара: 114652
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Threats to networks are numerous and potentially devastating. Intrusion detection is one of core technologies of computer security. Most of the existing IDs (Intrusion Detection systems) use all features in the network packet to look for known intrusive patterns, some of these features are irrelevant or redundant. A well-defined feature extraction algorithm makes the classification process more effective and efficient. This book approaches Linear Discriminant Analysis (LDA) with Back Propagation to address the problem of identifying important features in building an ID system, increase the convergence speed and decrease the training time. This book offers you a detailed and practical analysis with a fresh approach. An improved dataset (NSL-KDD) and effective classification is used to build the system that gives better and robust representation as it is able to transform features resulting in great data reduction, time reduction and error reduction in detecting new attacks. The content of the book is especially useful to professionals, students and researchers working in the field of Network Security & Privacy.
Ключевые слова: Feature extraction, Network Security, Intrusion Detection, Linear Discriminant Analysis, NSL-KDD