Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Semipotent rings and modules.
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Hamza Hakmi
ISBN: 9783659297656
Год издания: 2013
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 84
Издательство: LAP LAMBERT Academic Publishing
Цена: 25834 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: This book is an introductory text to the theory of semipotentness of rings and modules which is introduced as a natural generalization of Von Neumann regular rings. In the study of the regular rings, one of the interesting questions is the following: In a regular ring, is every one sided ideal be regular ring?. The answer of this question is negative in general. It was proved that every one sided ideal of a regular (semipotent) ring is semipotent. R. Ware proved that, there are projective regular modules which do not have a regular endomorphism ring. It was proved that, the endomorphism ring of every regular module (in the sense of Zelmanowitz) is semipotent with zero radical Jacobson. The second part of this book is specialize to study of the total, which is first introduced by F. Kasch, and the connection between semipotentness and the total. In addition to that it studies the semipotentness of (M,N) which is introduced as a generalization of the semipotent (endomorphism) ring and the semipotent (endomorphism) ring related to (co)singular ideal. The third part specialize to study of modules which are introduced as a generalization of the regular and locally projective modules.
Ключевые слова: Jacobson radical, Key words: Semipotent ring, The total, (Co)singular ideal, Endomorphism ring, Regular module, I0-module, Hom(M, N) .