Ваш любимый книжный интернет-магазин
Перейти на
GlavKniga.SU
Ваш город: Алматы
Ваше местоположение – Алматы
 Да 
От вашего выбора зависит время и стоимость доставки
Корзина: пуста
Авторизация 
  Логин
  
  Пароль
  
Регистрация  Забыли пароль?

Поиск по каталогу 
(строгое соответствие)
ISBN
Фраза в названии или аннотации
Автор
Язык книги
Год издания
с по
Электронный носитель
Тип издания
Вид издания
Отрасли экономики
Отрасли знаний
Сферы деятельности
Надотраслевые технологии
Разделы каталога
худ. литературы

Heuristics & Phylogenies. Generic Implementation + Encoding for Genetic Sequences Comparison

В наличии
Местонахождение: АлматыСостояние экземпляра: новый
Бумажная
версия
Автор: Chadi Kallab
ISBN: 9783659300172
Год издания: 2013
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 96
Издательство: LAP LAMBERT Academic Publishing
Цена: 20976 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:
Код товара: 114875
Способы доставки в город Алматы *
комплектация (срок до отгрузки) не более 2 рабочих дней
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK)
Курьерская доставка CDEK из города Москва
Доставка Почтой России из города Москва
      Аннотация: This research focuses on the NP-Hard problem of finding an optimal tree topology where leaves represent biological sequences. The problem tries to minimize the number of changes between sequences. As there number increases, the search space size grows exponentially, requesting the use of optimization methods, to come up with an acceptable optimal topology. Despite the efforts to relate large number of species and gene families to each other, the computation intensive load of many popular methods for evaluating trees (ex: parsimony and maximum likelihood) establish the quasi-inexistence of an exact solution for more than about 20 sequences. Different algorithm types (based on dynamic programming, linear programming, heuristics …) are used in sequence alignment. For large count of sequences, heuristics may give a result similar to the exact solution offered by dynamic prog or linear prog, but in much shorter time. The author aims to suggest a general way to encode the problem for different heuristic algorithm types; in addition to suggesting heuristics generic optimal implementations, trying to get a compromise between speedup, flexibility and detailed tracing/chronology of each run.
Ключевые слова: artificial intelligence, genetic algorithm, heuristics, Bioinformatics, phylogeny, algorithm, Tabu Search, Simulated Annealing, Generic, Stochastic Evolution, Simulated Evolution