Ваш любимый книжный интернет-магазин
Перейти на
GlavKniga.SU
Ваш город: Алматы
Ваше местоположение – Алматы
 Да 
От вашего выбора зависит время и стоимость доставки
Корзина: пуста
Авторизация 
  Логин
  
  Пароль
  
Регистрация  Забыли пароль?

Поиск по каталогу 
(строгое соответствие)
ISBN
Фраза в названии или аннотации
Автор
Язык книги
Год издания
с по
Электронный носитель
Тип издания
Вид издания
Отрасли экономики
Отрасли знаний
Сферы деятельности
Надотраслевые технологии
Разделы каталога
худ. литературы

Existence and stability of solutions to nonlinear dynamical systems.

В наличии
Местонахождение: АлматыСостояние экземпляра: новый
Бумажная
версия
Автор: Yingxin Guo
ISBN: 9783659318481
Год издания: 2013
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 160
Издательство: LAP LAMBERT Academic Publishing
Цена: 38626 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:
Код товара: 117044
Способы доставки в город Алматы *
комплектация (срок до отгрузки) не более 2 рабочих дней
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK)
Курьерская доставка CDEK из города Москва
Доставка Почтой России из города Москва
      Аннотация: This book is an outgrowth of our results on the existence and stability of solutions to nonlinear dynamical systems, stochastic systems, and impulsive systems over the last five years. In particular, we present the Razumikhin-type exponential stability criteria for impulsive stochastic functional differential systems, the stability analysis of neutral stochastic delay differential equations by a generalization of Banachs contraction principle and the globally asymptotical stability in the mean square for stochastic neural networks with time-varying delays and fixed moments of impulsive effect. Also, we discuss oscillation criteria based on a new weighted function for linear matrix Hamiltonian systems and the existences of the positive solutions or nontrivial solutions of nonlinear differential equations.
Ключевые слова: Stability, Neural Networks, stochastic, impulse, Lyapunov functionals, Matrix inequality, Nonlinear differential equations