Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Fault Isolation Using a Reconstruction Algorithm. By Using Auto-Associative Neural Networks
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Sayyed Hamidreza Mousavi and Mehdi Shahbazian
ISBN: 9783659323843
Год издания: 2013
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 88
Издательство: LAP LAMBERT Academic Publishing
Цена: 30784 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Process history based approaches for fault diagnosis has been widely used recently. Principal Component Analysis (PCA) is one of these approaches, which is a linear approach; however most of the processes are nonlinear. Hence nonlinear extensions of the PCA have been developed. Nonlinear Principal Component Analysis (NLPCA) based on the neural networks is a common method which is used for process monitoring and fault diagnosis. NLPCA based neural networks are implemented using different methods, in this book we apply Auto-Associative Neural Networks (AANN) for implementing NLPCA. This work is aimed towards the development of an algorithm used in conjunction with an Auto Associative Neural Network (AANN) to help locate and reconstruct faulty sensor inputs in control systems. Also an algorithm is developed for locating the source of the process fault.
Ключевые слова: process monitoring, sensor fault diagnosis, Auto-Associative Neural Network