Ваш любимый книжный интернет-магазин
Перейти на
GlavKniga.SU
Ваш город: Алматы
Ваше местоположение – Алматы
 Да 
От вашего выбора зависит время и стоимость доставки
Корзина: пуста
Авторизация 
  Логин
  
  Пароль
  
Регистрация  Забыли пароль?

Поиск по каталогу 
(строгое соответствие)
ISBN
Фраза в названии или аннотации
Автор
Язык книги
Год издания
с по
Электронный носитель
Тип издания
Вид издания
Отрасли экономики
Отрасли знаний
Сферы деятельности
Надотраслевые технологии
Разделы каталога
худ. литературы

On the Numerical Solutions of Ill-Posed Problems.

В наличии
Местонахождение: АлматыСостояние экземпляра: новый
Бумажная
версия
Автор: A. M. Nagy
ISBN: 9783659310409
Год издания: 2013
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 80
Издательство: LAP LAMBERT Academic Publishing
Цена: 25692 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:
Код товара: 117338
Способы доставки в город Алматы *
комплектация (срок до отгрузки) не более 2 рабочих дней
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK)
Курьерская доставка CDEK из города Москва
Доставка Почтой России из города Москва
      Аннотация: Ill-posed problem has been steadily and surely gaining popularity in mathematical literature for many years. It occurs in a wide variety of applications such as geophysics, astrometry, mathematical biology, and image restoration. The notion of a well-posed problem and ill-posed problem goes back to a famous paper by Jacques Hadamard published in 1902. In many science and engineering applications it is necessary to compute an approximate solution of the linear system. In this work, we present and analyze a recent method called dynamical systems method (DSM) for a stable solution of linear ill-posed problems. Also, we present one of the traditional stable method for solving linear ill-posed problems, this method called Tikhonov or variational regularization method. Comparison between the two methods is one of the main goals of this book. This book is highly recommended to both postgraduate students and researchers in wide variety of applications.
Ключевые слова: Ill-posed problems, L-Curve method, Dynamical systems method.