Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
An Introductory Study on Time Series Modeling and Forecasting.
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Ratnadip Adhikari and R. K. Agrawal
ISBN: 9783659335082
Год издания: 2013
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 76
Издательство: LAP LAMBERT Academic Publishing
Цена: 30358 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:Код товара: 117936
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Modeling and forecasting of time series data has fundamental importance in various practical domains. The aim of this book is to present a concise description of some popular time series forecasting models with their salient features. Three important classes of time series models, viz. stochastic, neural networks and support vector machines are studied together with their inherent forecasting strengths and weaknesses. The book also meticulously discusses about several basic issues related to time series analysis, such as stationarity, parsimony, overfitting, etc. Our study is enriched by presenting the empirical forecasting results, conducted on six real-world time series datasets. Five performance measures are used to evaluate the forecasting accuracies of different models as well as to compare the models. For each of the six time series datasets, we further show the obtained forecast diagram which graphically depicts the closeness between the original and predicted observations.
Ключевые слова: forecasting, Time Series Analysis, Artificial Neural Networks (ANNs), Seasonal time series, Box-Jenkins models, Support Vector Machines (SVMs)