Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Marginal and Random effect models in Vaccine Clinical Trials. Statistical Modeling of Solicited Symptoms in Vaccine Clinical Trials
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Bedilu Alamirie Ejigu
ISBN: 9783659329371
Год издания: 2013
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 60
Издательство: LAP LAMBERT Academic Publishing
Цена: 29790 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: In many clinical trials, in order to characterize the safety profile of a subject with a given treatment, multiple measurements are taken over time. Mostly, measurements taken from the same subject are not independent. The types of model for data analysis highly depend on the nature and measurement scale of the outcome variable. In this book, the two model families: marginal, and random effect models that take the correlation among measurements of the same subject into account were briefly discussed using real datasets. In case of marginal models the correlated nature of the data is taken into account inside the estimating equation, while for random effects model it is done through the random effect part. In the random effect approach the goal is to determine subject-specific changes over the courses of the study, while in the marginal model the emphasis is to determine the overall change. Joint modeling approaches that used to model different outcomes jointly, and model selection and diagnosis measures were discussed briefly. Moreover, SAS codes used in the analysis for each model type were included in book.
Ключевые слова: Generalized Estimating Equations, Generalized linear mixed models, Generalized ordered logit models, Joint generalized mixed models, Partial proportional odds models