Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Online Surface Roughness Evaluation. Evaluation of surface roughness of turned components by machine vision techniques using front lighting
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: V. G. Sridhar and M. Adithan
ISBN: 9783659334351
Год издания: 2013
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 120
Издательство: LAP LAMBERT Academic Publishing
Цена: 31921 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Surface roughness of machined components has a significant influence on the service performance such as lubrication, friction, wear, fatigue, corrosion, adhesion in surface coating etc. Hence, inspection and control of the surface roughness of components are very important in manufacturing and metal cutting industries. Most of the surface roughness measuring instruments used in industries are contact type, off-line stylus instruments which are not adoptable for highly automated factory environment. The proposed method uses a machine vision technique and LED front lighting method as a substitute for evaluation of surface roughness measurements by stylus instrument.A light scattered pattern from the machined surface is captured and processed to obtain a characteristics feature of optical information viz. Ga (Grey Level value) which is further processed to evaluate the surface roughness value.A comparative study made on surface roughness values obtained by the traditional method and the Machine vision technique shows favorable results. The Machine Vision Techniques using Front Lighting is suitable for online non-contact method which can be adopted for automated inspection environment.
Ключевые слова: LED, Online Measurement, Machine Vision System, Front Lighting, SurfaceRoughness