Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Modular degrees of Elliptic curves. On a conjecture of Watkins
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Srilakshmi Krishnamoorthy
ISBN: 9783659349416
Год издания: 2013
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 104
Издательство: LAP LAMBERT Academic Publishing
Цена: 31353 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Modular degree is an interesting invariant of elliptic curves. It is computed by variety of methods. After computer calculations, Watkins conjectured that given E over the rational numbers of rank R, 2^R divides (Phi), where (Phi) : X_0(N) to E is the optimal map (up to isomorphism of E) and degree of (Phi) is the modular degree of E. In fact he observed that 2^{R+K} divides the degree of the modular degree and 2^K depends on {W}, where {W}is the group of Atkin-Lehner involutions, the cardinality of {W}=2^{omega(N)}, N is the conductor of the elliptic curve and omega(N) counts the number of distinct prime factors of N. The goal of this thesis is to study this conjecture. We have proved that 2^{R+K} divides the degree of (Phi) would follow from an isomorphism of complete intersection of a universal deformation ring and a Hecke ring, where 2^K is the cardinality of W^{prime}, the cardinality of a certain subgroup of the group of Atkin-Lehner involutions. I attempt to verify 2^{R+K} divides the degree of ({Phi}) for certain Ellipitic Curves E by using a computer algebra package Magma. I have verified when N is squarefree. Computations are in chapter 5.
Ключевые слова: Elliptic curves, Modular degrees, watkins' conjecture, Deformation rings