Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Wheat Yield Prediction & Climate Change in Potohar Region of Pakistan.
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Ghulam Rasul and Dildar Hussain Kazmi
ISBN: 9783659345609
Год издания: 2013
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 104
Издательство: LAP LAMBERT Academic Publishing
Цена: 31353 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: In Pakistan, wheat being the staple diet is the most important crop and cultivated on the largest acreages. It contributes 14.4 percent to the value added in agriculture and 3.0 percent to GDP. Over the past three decades, increased agricultural productivity occurred largely due to the deployment of high-yielding cultivars and increased fertilizer use. With the introduction of semi-dwarf wheat cultivars, wheat productivity has been increased in all the major cropping systems representing the diverse and varying agro-ecological conditions. Improved semi-dwarf wheat cultivars available in Pakistan have genetic yield potential of 6-8 tones per hectare whereas our national average yields are about 2.7 t/ha. A large number of experiment stations and on-farm demonstrations have repeatedly shown high yield potential of the varieties. There are progressive farmers of irrigated area who are harvesting 6 to 7 2.7 t/ha. However, farmers yield ranges 0.5 to 1.3 t/ ha depending on the amount of rainfall in rainfed areas and in irrigated areas it ranges from 2.5 to 3 t/ ha depending upon the amount of water available and other factors. Source: Pakistan Agricultural Research Council
Ключевые слова: climate change, SPSS, Potohar, yield prediction, Agromet parameters, hydrological extremes