Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Large-Scale Arabic Text Classification. An Approach Towards Distributed Data Mining
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Mohammed M. Abu Tair
ISBN: 9783659347665
Год издания: 2013
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 128
Издательство: LAP LAMBERT Academic Publishing
Цена: 37490 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:Код товара: 119301
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Text classification has become one of the most important techniques in text mining. A number of machine learning algorithms have been introduced to deal with automatic text classification. One of the common classification algorithms is the k-NN algorithm which is known to be one of the best classifiers applied for different languages including Arabic language. However, the k-NN algorithm is of low efficiency because it requires a large amount of computational power. Such a drawback makes it unsuitable to handle a large volume of text documents with high dimensionality and in particular in the Arabic language. This book, therefore, introduces a high performance parallel classifier for large-scale Arabic text that achieves the enhanced level of efficiency, scalability, and accuracy. The parallel classifier based on the sequential k-NN algorithm. We tested the classifier using the OSAC corpus. We studied the performance of the parallel classifier on a multicomputer cluster. The results indicate that the parallel classifier has very good speedups and scalability and is capable of handling large document collections with higher classification results.
Ключевые слова: parallel and distributed computing, Arabic text classification, k-NN algorithm, Parallel classifier, Multicomputer cluster.