Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Semantic Similarity Measures for Knowledge Engineering. Experiments on UMLS, WordNet and Biomedical Corpus
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Ahmad Pesaranghader and Saravanan Muthaiyah
ISBN: 9783659341267
Год издания: 2013
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 220
Издательство: LAP LAMBERT Academic Publishing
Цена: 51326 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:Код товара: 120247
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Knowledge management has been considered in the past decades applying techniques to cope with organizing data, information and knowledge. It implements methods to manage knowledge on papers as well as digital ones. Meanwhile, birth of the World Wide Web despite all of its advantages has initiated a number of issues for the researchers due to massiveness of the data on the Web. Therefore, the new knowledge engineering techniques must be automated to save time and effort of man power with considering the Web with a shared understanding of the data among all of its components. To achieve accurate and integrated definition of all available data, machines need to make a unique understanding of all discrete data sources. This book is aimed at presenting existing Measures of Semantic Similarity for resolving foregoing issue. These measures are also useful in tasks such as text categorizing, machine translation and information retrieval. Furthermore, this book introduces two new normalized functions for measuring semantic similarity between two concepts based on first and second order context and information content vectors computed from MEDLINE as the biomedical corpus, UMLS and WordNet.
Ключевые слова: Semantic Web, Similarity Measure, WordNet, UMLS, MEDLINE
Похожие издания
Отрасли экономики: Промышленность в целом Ayesha Banu Semantic Similarity Measures. Ontology and Information Content Approaches. 2020 г., 72 стр., мягкий переплет Semantic web, the vision of Tim Berner's Lee, is an effort to enhance current web, by giving “well-defined meaning” to the content of Web pages , better enabling computers and people to work in cooperation. Ontology is at the heart of Semantic Web describing the concepts, their relationships and properties within their domain. “Reusability... | 25408 тг | |
Отрасли знаний: Точные науки -> Информатика и программирование Saruladha Krishnamurthy Semantic similarity measures for IR systems using Ontology. . 2015 г., 212 стр., мягкий переплет This work focuses on devising computational models for assessing similarity among words/concepts in the knowledge sources like ontologies.Semantic similarity assessment plays an important role in the fields of Psychology, Information Retrieval and Information Integration systems. The paradigm shift of syntactic web to semantic web has emphasized... | 49932 тг |