Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
New Algorithms for Best Results In Varied Densities.
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Mohammed Elbatta
ISBN: 9783659369391
Год издания: 2013
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 96
Издательство: LAP LAMBERT Academic Publishing
Цена: 31069 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:Код товара: 120340
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: An enhancement of DBSCAN algorithm is proposed, which detects the clusters of different shapes, sizes that differ in local density. We introduce three new algorithms. Our first proposed algorithm Vibration Method DBSCAN (VMDBSCAN) first finds out the “core” of each cluster – clusters generated after applying DBSCAN -. Then it “vibrates" points toward cluster that has the maximum influence on these points. The second proposed algorithm is Dynamic Method DBSCAN (DMDBSCAN). It selects several values of the radius of a number of objects (Eps) for different densities according to a k-dist plot. For each value of Eps, DBSCAN algorithm is adopted in order to make sure that all the clusters with respect to corresponding density are clustered. Next the points that have been clustered are ignored, which avoids marking both denser areas and sparser ones as one cluster. The last algorithm Vibration and Dynamic DBSCAN (VDDBSCAN) combines the first and the second algorithms. It begins by searching for each level of density to its corresponding Eps, then it will use DBSCAN to find all clusters, finally, it will use vibration method of VMDBSCAN to solve the problem of splitting clusters
Ключевые слова: Cluster, Core, DBSCAN, Vibrating, Density Different Cluster, Variance Density, Total Density Function, K-dist.