Ваш любимый книжный интернет-магазин
Перейти на
GlavKniga.SU
Ваш город: Алматы
Ваше местоположение – Алматы
 Да 
От вашего выбора зависит время и стоимость доставки
Корзина: пуста
Авторизация 
  Логин
  
  Пароль
  
Регистрация  Забыли пароль?

Поиск по каталогу 
(строгое соответствие)
ISBN
Фраза в названии или аннотации
Автор
Язык книги
Год издания
с по
Электронный носитель
Тип издания
Вид издания
Отрасли экономики
Отрасли знаний
Сферы деятельности
Надотраслевые технологии
Разделы каталога
худ. литературы

Markov property in non-commutative probability.

В наличии
Местонахождение: АлматыСостояние экземпляра: новый
Бумажная
версия
Автор: J?zsef Pitrik
ISBN: 9783659358920
Год издания: 2013
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 108
Издательство: LAP LAMBERT Academic Publishing
Цена: 29753 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:
Код товара: 120384
Способы доставки в город Алматы *
комплектация (срок до отгрузки) не более 2 рабочих дней
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK)
Курьерская доставка CDEK из города Москва
Доставка Почтой России из города Москва
      Аннотация: On a non-commutative or quantum probability space the Markov property is based on a completely positive, identity preserving map, so-called quasi-conditional expectation and a state which is left invariant by it. A state of a three-fold tensor product system is Markovian if and only if we have got equality in the strong subadditivity (SSA) of von Neumann entropy. We show that the equality case in the SSA is equivalent with the Markov property also for the so-called CAR algebras that serves as the description of fermion lattice systems. We give a characterization of Markovian quasi-free (Gaussian) states on CAR algebras. We also investigated the Markov property on CCR algebras which is related to the bosonic systems and the characterization of quasi-free Markov states is given. Several entropy related quantities associated with Markov property is also described.
Ключевые слова: Non-commutative probability, Markov states, CCR algebra, CAR algebra, von Neumann entropy