Ваш любимый книжный интернет-магазин
Перейти на
GlavKniga.SU
Ваш город: Алматы
Ваше местоположение – Алматы
 Да 
От вашего выбора зависит время и стоимость доставки
Корзина: пуста
Авторизация 
  Логин
  
  Пароль
  
Регистрация  Забыли пароль?

Поиск по каталогу 
(строгое соответствие)
ISBN
Фраза в названии или аннотации
Автор
Язык книги
Год издания
с по
Электронный носитель
Тип издания
Вид издания
Отрасли экономики
Отрасли знаний
Сферы деятельности
Надотраслевые технологии
Разделы каталога
худ. литературы

Towards Ultra-High Speed Online Network Traffic Classification. Enhanced with Machine Learning Algorithms and OpenFlow Accelerators

В наличии
Местонахождение: АлматыСостояние экземпляра: новый
Бумажная
версия
Автор: Sanping Li
ISBN: 9783659370489
Год издания: 2013
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 200
Издательство: LAP LAMBERT Academic Publishing
Цена: 40281 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:
Код товара: 120507
Способы доставки в город Алматы *
комплектация (срок до отгрузки) не более 2 рабочих дней
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK)
Курьерская доставка CDEK из города Москва
Доставка Почтой России из города Москва
      Аннотация: Ultra-high speed networks require real-time traffic classification in order to identify the presence of certain network applications and utilize network resources to ensure these applications run smoothly. Machine learning provides a promising alternative for traffic classification based on statistical flow features, avoiding raising privacy and security concerns. Accurate traffic classification, however, is an expensive procedure that can increase networking latency and decrease bandwidth. As an open specification, the OpenFlow protocol provides the flexibility of programmable flow processing to perform more complicated statistical analysis. So, enhanced with machine learning algorithms and OpenFlow extensions, my research focuses on the design and implementation of traffic classification system that accurately classifies traffic without affecting the latency or bandwidth of network.
Ключевые слова: machine learning, Network traffic classification, Concept Drift, OpenFlow, multi-core.