Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Machine Learning Methods in Identification of Encryption Methods.
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: P. Chitti Babu,S. Ramakrishna and K.C.K. Bharathi
ISBN: 9783659386237
Год издания: 2013
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 124
Издательство: LAP LAMBERT Academic Publishing
Цена: 35181 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Cryptanalysis is the study of methods for obtaining the meaningful message from the encrypted information without access to the secret key information that is essential for decryption. One important task in cryptanalysis when only the cipher text is available is: identification of the encryption method used. The focus of this work is on identification of the encryption method. In this work, support vector machine based methods are explored for identification of encryption method from a given cipher text. This task is considered as a pattern classification task. One approach is proposed to the identification of encryption method using the support vector machines (SVM). In this approach, the cipher text is given as input to a classifier. Because of the complexity involved in the chosen encryption methods, the performance of the classifier using the cipher text is very poor. Hetero-association models built using support vector regression (SVR) are considered for generating the partially decrypted text. Different methods are considered to represent a cipher text or a partially decrypted text by a feature vector. This feature vector is given as input to an SVM based classifier.
Ключевые слова: Cryptanalysis, pattern classification, Kernel methods, Machine learning methods
Похожие издания
Отрасли знаний: Точные науки -> Информатика и программирование B.V. Kiranmayee and Chalumuru Suresh Prediction of breast cancer using various machine learning methods. Machine Learning. 1905 г., 96 стр., мягкий переплет Breast cancer is horrendous disease after skin cancer which is most common in woman and it is a foremost cause for the upsurge in mortality rate. Screening mammography is the operative procedure for detecting masses and abnormalities allied to breast cancer. Digital mammograms are utmost operative source that helps in early detection of cancer in... | 34186 тг | |
Отрасли знаний: Точные науки -> Информатика и программирование -> Информационные технологии Sibt ul Hussain Machine Learning Methods for Visual Object Detection. . 2012 г., 160 стр., мягкий переплет This book presents practical methods for detecting common object classes such as people, cars, cows, chairs, etc., in real world images. In particular, it discusses a range of visual representations (Histograms of Oriented Gradients (HOG), Local Binary Patterns (LBP), Local Ternary Patterns (LTP), Local Quantized Patterns (LQP) and similar... | 33342 тг | |
Отрасли знаний: Точные науки -> Информатика и программирование -> Информационные технологии Mustafa Mikail ?z?ilo?lu and Mehmet Fatih Akay Algorithms for Prediction of Upper Body Power of Cross-Country Skiers. Prediction of Upper Body Power of Cross-Country Skiers Using Machine Learning Methods Combined With Feature Selection. 2016 г., 100 стр., мягкий переплет Upper body power (UBP) is one of the most important factors affecting the performance of cross-country skiers during races. The purpose of this study is to develop new prediction models for predicting the 10-second UBP (UBP10) and 60-second UBP (UBP60) of cross-country skiers by using General Regression Neural Networks (GRNN), Radial-Basis... | 31686 тг | |
Отрасли знаний: Точные науки -> Информатика и программирование Mustafa A??kkar and Mehmet Fatih Akay Developing VO2max Prediction Models Using Machine Learning Methods. . 2015 г., 184 стр., мягкий переплет The purpose of this work is to develop VO2max prediction models by using non-exercise, submaximal and hybrid variables by using Support Vector Machines (SVM), Multi-layer Feed-forward Artificial Neural Networks (MFANN) and Multiple Linear Regression (MLR) on different data sets. Using 10-fold cross validation on four different data sets, the... | 46295 тг |