Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
A Class of Multivariate Skew Distributions. Properties and Inferential Issues
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Deniz Akdemir
ISBN: 9783639512915
Год издания: 2013
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 136
Издательство: Scholars' Press
Цена: 35588 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Flexible parametric distribution models that can represent both skewed and symmetric distributions, namely skew symmetric distributions, can be constructed by skewing symmetric kernel densities by using weighting distributions. In this book, we study a multivariate skew family that have either centrally symmetric or spherically symmetric kernel. Specifically, we define multivariate skew symmetric forms of uniform, normal, Laplace, and logistic distributions by using the cumulative distribution functions of the same distributions as weighting distributions. Matrix and array variate extensions of these distributions are also introduced herein. We propose an estimation procedure based on the maximum product of spacings method and model identification. This idea also leads to bounded model selection criteria that can be considered as alternatives to Akaike's and other likelihood based criteria when the unbounded likelihood may be a problem. Applications of skew symmetric distributions to data are also considered.
Ключевые слова: Model Selection, Statistical Distributions, normal distribution, parametric density estimation, skew distributions, Multivariate Statistics