Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Protein Function Prediction from Protein Interaction Network. A Two Pass Neighborhood Approach
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Sovan Saha and Piyali Chatterjee
ISBN: 9783659402784
Год издания: 2013
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 148
Издательство: LAP LAMBERT Academic Publishing
Цена: 39733 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Proteins perform every function in a cell. With the advent of genome sequencing projects for different organisms, large amounts of DNA and protein sequence data is available, whereas their biological function is still unknown in the most of the cases. Predicting protein function is the most challenging problem in post-genomic era. Using sequence homology, phylogenetic profiles, gene expression data, and function of unknown protein can be predicted. Recently, the large interaction networks constructed from high throughput techniques like Yeast2Hybrid experiments are also used in prediction of protein function. As experimental techniques for detection and validation of protein interactions are time consuming, there is a need for computational methods for this task. Based on the concept that a protein performs similar function like its neighbor in protein interaction network, a method is proposed to predict protein function using protein-protein interaction data.This analysis should enlighten the path for predicting unannotated protein function hence identifying diseases and inventing methods of it's cureness.
Ключевые слова: protein interaction network, Protein Function Prediction, Functional Group, Neighborhood Ratio, Match Rate