Ваш любимый книжный интернет-магазин
Перейти на
GlavKniga.SU
Ваш город: Алматы
Ваше местоположение – Алматы
 Да 
От вашего выбора зависит время и стоимость доставки
Корзина: пуста
Авторизация 
  Логин
  
  Пароль
  
Регистрация  Забыли пароль?

Поиск по каталогу 
(строгое соответствие)
ISBN
Фраза в названии или аннотации
Автор
Язык книги
Год издания
с по
Электронный носитель
Тип издания
Вид издания
Отрасли экономики
Отрасли знаний
Сферы деятельности
Надотраслевые технологии
Разделы каталога
худ. литературы

Robust Classification Based on Sparsity. Basics and Potentials of the Sparse Representation based Classifier

В наличии
Местонахождение: АлматыСостояние экземпляра: новый
Бумажная
версия
Автор: Elena Battini S?nmez
ISBN: 9783659400667
Год издания: 2013
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 120
Издательство: LAP LAMBERT Academic Publishing
Цена: 23413 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:
Код товара: 122704
Способы доставки в город Алматы *
комплектация (срок до отгрузки) не более 2 рабочих дней
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK)
Курьерская доставка CDEK из города Москва
Доставка Почтой России из города Москва
      Аннотация: Classification of images is one of the most challenging research topics in machine learning, with a range of application including computer vision. Classification of faces is particularly hard due to the presence of disturbance elements such as illumination, pose, misalignment, occlusion, low resolution, expressions and scale; classification of emotions is complicated by the different level of intensity, cultural changes, and the co-presence of identity related info. Recent developments in the theory of compressive sensing have inspired a sparsity based classification algorithm, which turns out to be very successful. This work summarizes the study done on the Sparse Representation based Classifier (SRC), it investigates the characteristics of SRC, and it tests its potentialities on 2D emotional faces. It is an empirical work; all experiments use the Extended Yale B and the Extended Cohn-Kanade databases. Experimental results place SRC into the shortlist of the most successful classifiers. This study should help shed some light on SRC and should be especially useful to researchers and professionals in machine learning and computer vision.
Ключевые слова: classification, Emotion, signal processing, Sparse Representation based Classifier, 2D face, block-based classification, overlapping blocks, multi-biometrics system, merging algorithms, geometric normalization