Ваш любимый книжный интернет-магазин
Перейти на
GlavKniga.SU
Ваш город: Алматы
Ваше местоположение – Алматы
 Да 
От вашего выбора зависит время и стоимость доставки
Корзина: пуста
Авторизация 
  Логин
  
  Пароль
  
Регистрация  Забыли пароль?

Поиск по каталогу 
(строгое соответствие)
ISBN
Фраза в названии или аннотации
Автор
Язык книги
Год издания
с по
Электронный носитель
Тип издания
Вид издания
Отрасли экономики
Отрасли знаний
Сферы деятельности
Надотраслевые технологии
Разделы каталога
худ. литературы

A dynamic multi-algorithm collaborative-filtering system.

В наличии
Местонахождение: АлматыСостояние экземпляра: новый
Бумажная
версия
Автор: Christian ?berall
ISBN: 9783659399619
Год издания: 2013
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 232
Издательство: LAP LAMBERT Academic Publishing
Цена: 50642 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:
Код товара: 122745
Способы доставки в город Алматы *
комплектация (срок до отгрузки) не более 2 рабочих дней
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK)
Курьерская доставка CDEK из города Москва
Доставка Почтой России из города Москва
      Аннотация: Nowadays users have access to an immense number of media content. They are able to consume thousands of TV channels and millions of video clips from online portals like YouTube. Due to the immense number of available content, users can have the problem to find content of interest. Recommendation systems are able to filter the immense number of recommendations and they are able to recommend content which fits to the interests of users. However, this research work presents a newly developed recommendation system which is able to increase the accuracy of predictions for recommendations. The newly developed recommendation system uses several algorithms and dynamically selects the most accurate algorithm. The system takes state-of-the-art algorithms and newly developed collaborative-filtering algorithms into account. The research work of this thesis proves that a dynamic selection of the most accurate filtering algorithm by considering more algorithms is able to increase the accuracy of the predictions significantly.
Ключевые слова: Recommendation Systems, collaborative-filtering, content-based filteirng