Ваш любимый книжный интернет-магазин
Перейти на
GlavKniga.SU
Ваш город: Алматы
Ваше местоположение – Алматы
 Да 
От вашего выбора зависит время и стоимость доставки
Корзина: пуста
Авторизация 
  Логин
  
  Пароль
  
Регистрация  Забыли пароль?

Поиск по каталогу 
(строгое соответствие)
ISBN
Фраза в названии или аннотации
Автор
Язык книги
Год издания
с по
Электронный носитель
Тип издания
Вид издания
Отрасли экономики
Отрасли знаний
Сферы деятельности
Надотраслевые технологии
Разделы каталога
худ. литературы

The Classical Maximum Principle. Some Extensions and Applications.

В наличии
Местонахождение: АлматыСостояние экземпляра: новый
Бумажная
версия
Автор: Cristian - Paul Danet
ISBN: 9783659405563
Год издания: 2013
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 100
Издательство: LAP LAMBERT Academic Publishing
Цена: 34328 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:
Код товара: 123261
Способы доставки в город Алматы *
комплектация (срок до отгрузки) не более 2 рабочих дней
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK)
Курьерская доставка CDEK из города Москва
Доставка Почтой России из города Москва
      Аннотация: The maximum principle is one of the most useful and best known tools employed in the study of partial differential equations. The maximum principle enables us to obtain information about uniqueness, approximation, boundedness and symmetry of the solution, bounds for the first eigenvalue, quantities of physical interest, necessary conditions of solvability for some boundary value problems, etc. The book is divided into two parts. Part I contains two chapters and presents the classical maximum principle for linear equations, some of its direct extensions for nonlinear equations and their applications. Part II of this book is divided into three chapters and is devoted to the P function method and its applications. The book is addressed to graduate students in mathematics and to professional mathematicians, with an interest in elliptic partial differential equations.
Ключевые слова: Maximum Principle, P - function, second order equation, higher order equation, thin plate equation