Ваш любимый книжный интернет-магазин
Перейти на
GlavKniga.SU
Ваш город: Алматы
Ваше местоположение – Алматы
 Да 
От вашего выбора зависит время и стоимость доставки
Корзина: пуста
Авторизация 
  Логин
  
  Пароль
  
Регистрация  Забыли пароль?

Поиск по каталогу 
(строгое соответствие)
ISBN
Фраза в названии или аннотации
Автор
Язык книги
Год издания
с по
Электронный носитель
Тип издания
Вид издания
Отрасли экономики
Отрасли знаний
Сферы деятельности
Надотраслевые технологии
Разделы каталога
худ. литературы

Temporal Weather Prediction using Genetic Algorithm. Utilizing the techniques of Back Propagation Algorithms

В наличии
Местонахождение: АлматыСостояние экземпляра: новый
Бумажная
версия
Автор: Pankaj Bhambri and Shaminder Singh
ISBN: 9783659401237
Год издания: 2013
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 64
Издательство: LAP LAMBERT Academic Publishing
Цена: 25124 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:
Код товара: 123546
Способы доставки в город Алматы *
комплектация (срок до отгрузки) не более 2 рабочих дней
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK)
Курьерская доставка CDEK из города Москва
Доставка Почтой России из города Москва
      Аннотация: Prediction is a phenomenon of knowing what may happen to a system in the next coming time periods. Weather is a time series based, continuous, data-intensive, dynamic, and chaotic process.Due to dependence of weather on time series based data and non-linearity in climatic physics neural networks are suitable to predict meteorological processes. In the present research, firstly weather related data have been collected, weather parameters have been selected, N-Sliding window technique is applied, relations between dependent parameters are found and data has been normalized to feed to the network as input. After the per-processing of data, suitable neural network architecture has been determined and then the network has been trained by feeding the input as well as output data set under supervised training. Afterwards, testing of the networks has been done for different input sets to check how accurately the network has been trained. Finally, a comparison between the existing and proposed time series based technique has been done. The proposed hybrid technique can learn efficiently by combining the strengths of genetic algorithm with back propagation algorithm.
Ключевые слова: genetic algorithm, Oscillator, artificial neural network, Back propagation algorithm, Mean Absolute Percentage Error, Numerical Weather Prediction, Single Layer Feed-forward Network