Ваш любимый книжный интернет-магазин
Перейти на
GlavKniga.SU
Ваш город: Алматы
Ваше местоположение – Алматы
 Да 
От вашего выбора зависит время и стоимость доставки
Корзина: пуста
Авторизация 
  Логин
  
  Пароль
  
Регистрация  Забыли пароль?

Поиск по каталогу 
(строгое соответствие)
ISBN
Фраза в названии или аннотации
Автор
Язык книги
Год издания
с по
Электронный носитель
Тип издания
Вид издания
Отрасли экономики
Отрасли знаний
Сферы деятельности
Надотраслевые технологии
Разделы каталога
худ. литературы

Ranking of Classifiers Using Active Meta Learning.

В наличии
Местонахождение: АлматыСостояние экземпляра: новый
Бумажная
версия
Автор: Nikita Bhatt,Amit Thakkar and Nirav Bhatt
ISBN: 9783659419843
Год издания: 2013
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 108
Издательство: LAP LAMBERT Academic Publishing
Цена: 34613 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:
Код товара: 124202
Способы доставки в город Алматы *
комплектация (срок до отгрузки) не более 2 рабочих дней
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK)
Курьерская доставка CDEK из города Москва
Доставка Почтой России из города Москва
      Аннотация: In Classification, Model Selection is one of the critical issues as different models from different categories are available. To select the best model for any given data set is a challenging task. Meta Learning automates this task by acquiring knowledge from the past experience and stores this knowledge into database called Meta Knowledge Base. When new data set comes, stored knowledge can be used for proving ranking of the candidate algorithms. But one of the problems with Meta Learning is generation of Meta Examples as large number of candidate algorithms and data sets are available. To reduce the generation of Meta Examples into Meta Knowledge Base, Active Meta Learning can be used that reduces generation of Meta Examples and at the same time maintaining the performance of candidate algorithms. In this book, Ranking is provided using Active Meta Learning approach by considering Data set Characteristics.
Ключевые слова: Data Mining, classification, Meta Learning, Active Meta Learning, Ranking Methods