Ваш любимый книжный интернет-магазин
Перейти на
GlavKniga.SU
Ваш город: Алматы
Ваше местоположение – Алматы
 Да 
От вашего выбора зависит время и стоимость доставки
Корзина: пуста
Авторизация 
  Логин
  
  Пароль
  
Регистрация  Забыли пароль?

Поиск по каталогу 
(строгое соответствие)
ISBN
Фраза в названии или аннотации
Автор
Язык книги
Год издания
с по
Электронный носитель
Тип издания
Вид издания
Отрасли экономики
Отрасли знаний
Сферы деятельности
Надотраслевые технологии
Разделы каталога
худ. литературы

Drought Detection & Quantification. Using Field-Based Spectral Measurements of Vegetation in Semi-Arid Regions

В наличии
Местонахождение: АлматыСостояние экземпляра: новый
Бумажная
версия
Автор: Geoffrey Marshall
ISBN: 9783659410734
Год издания: 2013
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 296
Издательство: LAP LAMBERT Academic Publishing
Цена: 56086 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:
Код товара: 124257
Способы доставки в город Алматы *
комплектация (срок до отгрузки) не более 2 рабочих дней
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK)
Курьерская доставка CDEK из города Москва
Доставка Почтой России из города Москва
      Аннотация: Drought is a serious climatic condition that affects nearly all climatic zones worldwide, with semi-arid regions being especially susceptible to drought conditions because of their low annual precipitation and sensitivity to climate changes. Drought indices such as the Standardized Precipitation Index (SPI) have been developed for quantifying drought conditions. Usually, calculation of drought indices requires a long record of climatic data. Remote sensing of semi-arid vegetation can provide vegetation indices which can be used to link drought conditions when correlated with various drought indices. Spectral reflectance measurements of creosote and black gramma grass were taken between January and November 2003 in the Sevilleta National Wildlife Refuge of New Mexico and various vegetation indices were derived. Each vegetation index was correlated with the SPI of various weekly timescales at varying time-lag intervals calculated from 1999. The results show a strong linear correlation between the vegetation indices NDVI, Greenness Index, ARVI and drought index SPI at various SPI measurements with various lag times
Ключевые слова: Remote Sensing Drought NDVI Vegetation Index Spectral Semi Arid Detection Water