Ваш любимый книжный интернет-магазин
Перейти на
GlavKniga.SU
Ваш город: Алматы
Ваше местоположение – Алматы
 Да 
От вашего выбора зависит время и стоимость доставки
Корзина: пуста
Авторизация 
  Логин
  
  Пароль
  
Регистрация  Забыли пароль?

Поиск по каталогу 
(строгое соответствие)
ISBN
Фраза в названии или аннотации
Автор
Язык книги
Год издания
с по
Электронный носитель
Тип издания
Вид издания
Отрасли экономики
Отрасли знаний
Сферы деятельности
Надотраслевые технологии
Разделы каталога
худ. литературы

DCE-MRI: lesion detection and classification in Breast Cancer.

В наличии
Местонахождение: АлматыСостояние экземпляра: новый
Бумажная
версия
Автор: Roberta Fusco,Mario Sansone and Antonella Petrillo
ISBN: 9783659427572
Год издания: 2013
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 160
Издательство: LAP LAMBERT Academic Publishing
Цена: 42249 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли экономики:
Код товара: 124417
Способы доставки в город Алматы *
комплектация (срок до отгрузки) не более 2 рабочих дней
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK)
Курьерская доставка CDEK из города Москва
Доставка Почтой России из города Москва
      Аннотация: Dynamic contrast-enhanced MRI (DCE-MRI) is a well established, high-performance, imaging modality for the diagnosis and management of patients with solid tumors. In the last two decades, the diagnosis, grading and classification of tumours has considerably benefited from the development of DCE-MRI which is now essential for the adequate clinical management of many tumour types. The main aim of this work is to investigate the use of semi-quantitative and quantitative functional parameters for segmentation and classification of breast lesions via DCE-MRI. The objectives of the work can be detailed as follows: to review and describe the most diffused techniques for evaluating the time intensity curve in DCE-MRI with a focus on tracer kinetics models proposed in literature; to evaluate the influence of the parametrization of the classic bi-compartmental model; to assess the performance of simultaneous tracer kinetic modelling and pixel classification as either suspicious or not suspicious; to assess the performance of machine learning techniques using morphological, textural and dynamic features for segmentation and classification of breast lesions.
Ключевые слова: breast cancer, DCE-MRI, model free and model based analysis, segmentation and classification