Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
DCE-MRI: lesion detection and classification in Breast Cancer.
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Roberta Fusco,Mario Sansone and Antonella Petrillo
ISBN: 9783659427572
Год издания: 2013
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 160
Издательство: LAP LAMBERT Academic Publishing
Цена: 42249 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Dynamic contrast-enhanced MRI (DCE-MRI) is a well established, high-performance, imaging modality for the diagnosis and management of patients with solid tumors. In the last two decades, the diagnosis, grading and classification of tumours has considerably benefited from the development of DCE-MRI which is now essential for the adequate clinical management of many tumour types. The main aim of this work is to investigate the use of semi-quantitative and quantitative functional parameters for segmentation and classification of breast lesions via DCE-MRI. The objectives of the work can be detailed as follows: to review and describe the most diffused techniques for evaluating the time intensity curve in DCE-MRI with a focus on tracer kinetics models proposed in literature; to evaluate the influence of the parametrization of the classic bi-compartmental model; to assess the performance of simultaneous tracer kinetic modelling and pixel classification as either suspicious or not suspicious; to assess the performance of machine learning techniques using morphological, textural and dynamic features for segmentation and classification of breast lesions.
Ключевые слова: breast cancer, DCE-MRI, model free and model based analysis, segmentation and classification