Ваш любимый книжный интернет-магазин
Перейти на
GlavKniga.SU
Ваш город: Алматы
Ваше местоположение – Алматы
 Да 
От вашего выбора зависит время и стоимость доставки
Корзина: пуста
Авторизация 
  Логин
  
  Пароль
  
Регистрация  Забыли пароль?

Поиск по каталогу 
(строгое соответствие)
ISBN
Фраза в названии или аннотации
Автор
Язык книги
Год издания
с по
Электронный носитель
Тип издания
Вид издания
Отрасли экономики
Отрасли знаний
Сферы деятельности
Надотраслевые технологии
Разделы каталога
худ. литературы

Collaborative Filtering. Using Machine Learning and Statistical Techniques

В наличии
Местонахождение: АлматыСостояние экземпляра: новый
Бумажная
версия
Автор: Xiaoyuan Su
ISBN: 9783659429095
Год издания: 2013
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 164
Издательство: LAP LAMBERT Academic Publishing
Цена: 35016 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:
Код товара: 124583
Способы доставки в город Алматы *
комплектация (срок до отгрузки) не более 2 рабочих дней
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK)
Курьерская доставка CDEK из города Москва
Доставка Почтой России из города Москва
      Аннотация: Collaborative filtering (CF), a very successful recommender system, is one of the applications of data mining for incomplete data. The main objective of CF is to make accurate recommendations from highly sparse user rating data. My contributions to this research topic include proposing the frameworks of imputation-boosted collaborative filtering (IBCF) and imputed neighborhood based collaborative filtering (INCF). We also proposed a model-based CF technique, TAN-ELR CF, and two hybrid CF algorithms, sequential mixture CF and joint mixture CF. Empirical results show that our proposed CF algorithms have very good predictive performances. In the investigation of applying imputation techniques in mining incomplete data, we proposed imputation-helped classifiers, and VCI predictors (voting on classifications from imputed learning sets), both of which resulted in significant improvement in classification performance for incomplete data over conventional machine learned classifiers. The main imputation techniques involved in these algorithms include EM (expectation maximization) and BMI (Bayesian multiple imputation).
Ключевые слова: artificial intelligence, machine learning, Data Mining, Recommender Systems, Statistical analysis, Collaborative Filtering, Imputation, Data Sparsity