Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
A Stochastic Computational Model for Anopheles metapopulation dynamics. Towards malaria control and insight for eradication
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Olugbenga Oluwagbemi
ISBN: 9783659419904
Год издания: 2013
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 184
Издательство: LAP LAMBERT Academic Publishing
Цена: 46295 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:Код товара: 125973
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Human malaria is one of the most important public health problems in many African countries. In this book, a C++ - based, stochastic, spatially-explicit, predictive, computational model was developed, which is biologically rich, weather data-driven, and parameterized by field data, to simulate Anopheles metapopulation dynamics towards understanding and validating the seasonal dynamics of this vector. This is aimed at providing a potential tool towards achieving the reduction and suppression of this vector. It is also to provide insight into effective, efficient and novel control strategies towards the eradication of malaria. Results produced by the model from several simulations were validated with real-life CDC light trap, CBT and HLC (Human Landing Catch) Anopheles mosquitos’ field trap collection data from Macha, Zambia. The resulting model was shown to be a good, effective and potential tool for malaria control. This is a good book for computer scientists, computational biologists, high-profile researchers, public health analysts and health professionals all over the world.
Ключевые слова: control, Dynamics, modelling, stochastic, Malaria, Anopheles, Predictive, Eradication, Metapopulation, SPATIALLY-EXPLICIT