Ваш любимый книжный интернет-магазин
Перейти на
GlavKniga.SU
Ваш город: Алматы
Ваше местоположение – Алматы
 Да 
От вашего выбора зависит время и стоимость доставки
Корзина: пуста
Авторизация 
  Логин
  
  Пароль
  
Регистрация  Забыли пароль?

Поиск по каталогу 
(строгое соответствие)
ISBN
Фраза в названии или аннотации
Автор
Язык книги
Год издания
с по
Электронный носитель
Тип издания
Вид издания
Отрасли экономики
Отрасли знаний
Сферы деятельности
Надотраслевые технологии
Разделы каталога
худ. литературы

A Stand-Alone Methodology for Data Exploration. In Support of Data Mining and Analytics

В наличии
Местонахождение: АлматыСостояние экземпляра: новый
Бумажная
версия
Автор: Michael Gage
ISBN: 9783659464119
Год издания: 2013
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 116
Издательство: LAP LAMBERT Academic Publishing
Цена: 34897 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:
Код товара: 128055
Способы доставки в город Алматы *
комплектация (срок до отгрузки) не более 2 рабочих дней
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK)
Курьерская доставка CDEK из города Москва
Доставка Почтой России из города Москва
      Аннотация: With the emergence of Big Data, data high in volume, variety, and velocity, new analysis techniques need to be developed to effectively use the data that is being collected. Knowledge discovery from databases is a larger methodology encompassing a process for gathering knowledge from that data. Analytics pair the knowledge with decision making to improve overall outcomes. Organizations have conclusive evidence that analytics provide competitive advantages and improve overall performance. This paper proposes a stand-alone methodology for data exploration. Data exploration is one part of the data mining process, used in knowledge discovery from databases and analytics. The goal of the methodology is to reduce the amount of time to gain meaningful information about a previously unanalyzed data set using tabular summaries and visualizations. The reduced time will enable faster implementation of analytics in an organization. Two case studies using a prototype implementation are presented showing the benefits of the methodology.
Ключевые слова: Data Mining, analytics, Big Data, visualizations, data exploration