Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Singularities and Differential Algebras of Generalized Functions. A Basic Dichotomic Sheaf Theoretic Singularity Test
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Elemer Elad Rosinger
ISBN: 9783659505317
Год издания: 2013
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 192
Издательство: LAP LAMBERT Academic Publishing
Цена: 30727 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: It is often overlooked that there are naturally no less than infinitely many differential algebras of generalized functions. These infinitely many differential algebras of generalized functions are equally naturally subjected to a basic dichotomic sheaf theoretic singularity test regarding their significantly different abilities to deal with large classes of singularities. The property of a vector space or algebra of generalized functions of being a flabby sheaf proves to be essential in being able to deal with large classes of singularities. A review is presented of the way singularities are dealt with in five of the infinitely many types of differential algebras of generalized functions. These five types of algebras, in the order they were introduced in the literature are : the nowhere dense algebras, chains of algebras, the Colombeau algebras, space-time foam algebras, and local algebras. The first, third and fourth of them turned out to be the ones most frequently used in a variety of applications. Five fundamentally important issues related to singularities are pursued.
Ключевые слова: singularities, generalized functions, flabby sheaves, solving PDEs, differential algebras of generalized functions