Ваш любимый книжный интернет-магазин
Перейти на
GlavKniga.SU
Ваш город: Алматы
Ваше местоположение – Алматы
 Да 
От вашего выбора зависит время и стоимость доставки
Корзина: пуста
Авторизация 
  Логин
  
  Пароль
  
Регистрация  Забыли пароль?

Поиск по каталогу 
(строгое соответствие)
ISBN
Фраза в названии или аннотации
Автор
Язык книги
Год издания
с по
Электронный носитель
Тип издания
Вид издания
Отрасли экономики
Отрасли знаний
Сферы деятельности
Надотраслевые технологии
Разделы каталога
худ. литературы

Data mining for performance of vegetative filter strips. A comparison between prediction models : artificial neural networks (back propagation & radial basis function) vs. GRAPH

В наличии
Местонахождение: АлматыСостояние экземпляра: новый
Бумажная
версия
Автор: Sanyogita Andriyas
ISBN: 9783659506154
Год издания: 2013
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 216
Издательство: LAP LAMBERT Academic Publishing
Цена: 46658 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:
Код товара: 130067
Способы доставки в город Алматы *
комплектация (срок до отгрузки) не более 2 рабочих дней
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK)
Курьерская доставка CDEK из города Москва
Доставка Почтой России из города Москва
      Аннотация: The vegetative filter strips (VFS) are a best management practice. For quantifying the movement & amount of sediments & nutrients, the performance of VFS has to be modeled. Data available from the literature & recent experiments were used. Artificial runoff was created. Flow samples were analysed for concentrations for total suspended solids, total phosphorus & soluble phosphorus, & particle size distribution. Input-output data sets were used to train & test a multi-layered perceptron using back propagation (BP) algorithm & a radial basis function neural network using fuzzy c-means clustering algorithm. Sensitivity tests were done for finding optimum architectures of neural networks. The statistical analysis & comparisons between predicted & observed values for the three models showed that a BP network with 15 hidden units can model the performance of VFS efficiently, including the trapping of soluble P. They could predict the outputs, even without the particle size distribution. ANN'S have to be trained before being used to predict the outputs. GRAPH is mobile & could be successfully used for verification, since it takes into account the physical processes going on.
Ключевые слова: artificial neural networks, Back Propagation, Radial Basis Function, vegetative filter strips, best management practices