Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Partial Orders For Uncertainty, Causality, And Decision Making. General Properties, Operations, and Algorithms
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Francisco Zapata
ISBN: 9783659471650
Год издания: 2014
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 236
Издательство: LAP LAMBERT Academic Publishing
Цена: 47368 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: One of the main objectives of science and engineering is to help people select the most beneficial decisions. To make these decisions, we must know people's preferences, and we must have information about different possible consequences of the decisions. Since information is never absolutely accurate and precise, we must also have information about the degree of certainty of every piece of information. All these types of information naturally lead to partial orders: for preferences, a b means that b is preferable to a. This relation is used in decision theory. For events, a b means that a can influence b. This causality relation is one of the fundamental notions of physics, especially of physics of space-time. For uncertain statements, a b means that a is less certain than b. This relation is used in logics describing uncertainty, such as fuzzy logic. This research has revealed that some ideas are common in all three applications of partial orders. In this book, we analyze general properties, operations, and algorithms related to partial orders for representing uncertainty, causality, and decision making, with a special emphasis on uncertainty.
Ключевые слова: Uncertainty, Decision Making, lattices, Causality, partial orders, Algorithms, properties, Operations