Ваш любимый книжный интернет-магазин
Перейти на
GlavKniga.SU
Ваш город: Алматы
Ваше местоположение – Алматы
 Да 
От вашего выбора зависит время и стоимость доставки
Корзина: пуста
Авторизация 
  Логин
  
  Пароль
  
Регистрация  Забыли пароль?

Поиск по каталогу 
(строгое соответствие)
ISBN
Фраза в названии или аннотации
Автор
Язык книги
Год издания
с по
Электронный носитель
Тип издания
Вид издания
Отрасли экономики
Отрасли знаний
Сферы деятельности
Надотраслевые технологии
Разделы каталога
худ. литературы

Oil Field Optimization. Optimization and Machine Learning Approaches

В наличии
Местонахождение: АлматыСостояние экземпляра: новый
Бумажная
версия
Автор: Hyokyeong Lee
ISBN: 9783639708622
Год издания: 2014
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 120
Издательство: Scholars' Press
Цена: 37681 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:
Код товара: 131319
Способы доставки в город Алматы *
комплектация (срок до отгрузки) не более 2 рабочих дней
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK)
Курьерская доставка CDEK из города Москва
Доставка Почтой России из города Москва
      Аннотация: A major task of every oil company is oil field optimization, i.e. maximizing oil production and reducing operational cost. Knowledge about injector-producer relationships (IPRs) is crucial for optimal operation of oil fields. However, inferring IPRs has been a challenging problem due to the unknown underlying structure of oil fields, continuous change of the underlying structure over time, and the large number of wells, i.e. typically, hundreds of injection wells and hundreds of production wells. This book provides two different approaches which map the IPRs problem to a large-scale parameter estimation problem. One approach is constrained nonlinear optimization and the other is machine learning approach. The two approaches demonstrate that not only prediction accuracy but also computational efficiency can be achieved for large-scale parameter estimation problems. This book should help field engineers optimally operate oil fields and show researchers practical examples about how to apply optimization and machine learning techniques to oil field optimization.
Ключевые слова: Hybrid constrained nonlinear optimization, constrained linear least squares, sequential quadratic programming, injector-producer relationship, oil field optimization, structure learning of graphical model, locality principle, Belief Propagation, Factor graph, sum-product algorithm