Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Electric load forecasting using an artificial neural networks. Methods and solutions
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Natalia Gotman,Galina Shumilova and Tatiana Starceva
ISBN: 9783659459382
Год издания: 2014
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 100
Издательство: LAP LAMBERT Academic Publishing
Цена: 21242 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Electric load forecasting is an important research field in electric power industry. It plays a crucial role in solving a wide range of tasks of short-term planning and operating control of electric power system operating modes. Load forecasting is carried out in different time spans. Load forecasting within a current day – operating forecasting; one-day-week-month-ahead load forecasting – short-term load forecasting; one-month-quarter-year-ahead load forecasting – long-term load forecasting. So far a great number of both conventional and non-conventional electric load forecasting methods and models have been developed. The work presents research results of electric load forecasting for electrical power systems using artificial neural networks and fuzzy logic as one of the most advanced and perspective directions of solving this task. A theoretical approach to the issues discussed is combined with the data of experimental studies implemented with application of load curves of regional electrical power systems. The book is addressed to specialists and researchers concerned with operational control modes of electric power systems.
Ключевые слова: Artificial Neural Networks, power system, load forecasting, fuzzy neural networks
Похожие издания
Отрасли знаний: Инженерные дисциплины -> Электротехника и электроника Medha Joshi and Puneet Joshi An Intelligent and Efficient ANN Approach. Short Term Electric Load Forecasting. 2016 г., 148 стр., мягкий переплет Load forecasting is very important for decision processes in the electricity sector. STELF provides an accurate estimate for the operating of the power system and also a basis for energy transactions and decision making in energy markets. It is also very important for daily maintenance of power plants because most of the decisions, like the unit... | 34078 тг |