Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Modeling of Land Use Land Cover Change. CA Markov Modeling Approaches
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Md. Surabuddin Mondal
ISBN: 9783639709810
Год издания: 2014
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 196
Издательство: Scholars' Press
Цена: 50949 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: The goal of this book is to describe basics of land use land cover change (LULCC) modeling & explore of CA (Cellular Automata) Markov model to predict the future land use land cover (LULC) using LULC map extracted from the satellite imagery. The present book also described the research attempts, which are trying to standardize methodology for validation of prediction results. The research attempts to identify the sensitive parameter(s), which have the highest, lowest or intermediate influence on predicted results has been also introduced in this book. The comprehensive comparison of different CA (Cellular Automata) size of neighborhood (3x3, 5x5, and 7x7 CA) impacts on prediction results as well as comprehensive comparison of different time steps impacts on prediction results also explored. This book is structured to build a bridge between the Geoinformatics research, LULC pattern characterization, modeling of spatial processes and techniques. The direct beneficiaries of this book will include ecological and socio-economic researchers as well as the students, academicians, scientists, landscape managers, resource managers, regional planners, urban planners, and decision makers.
Ключевые слова: LULC, LULC change, LULC Prediction, CA Markov, sensitivity analysis.