Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Contrast Enhancement of Cancer Cell Images Using Fuzzy Logic. State of Fuzzy Image Processing in Pharmacology
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Katayoun Sayar and Mohammadjavad Paydar
ISBN: 9783659262951
Год издания: 2014
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 68
Издательство: LAP LAMBERT Academic Publishing
Цена: 23493 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:Код товара: 133250
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Image contrast enhancement is a widely used technique in image processing, which aims to improve the contrasts of degraded images. Low contrast is one of the most common defects of photographic, medical and electronic images and consequently enhancing the contrasts of the degraded images becomes necessary. In the present study, four contrast enhancement methods, Fuzzy Inference System (FIS), Global Histogram Equalization (GHE), Brightness preserving Bi-Histogram Equalization (BBHE) and Brightness Preserving Dynamic Fuzzy Histogram Equalization (BPDFHE) were applied on MATLAB popular images and also on microscopic images of in vitro cell migration assay. Efficiency of the techniques in contrast enhancement and mean brightness preservation were compared based on the output images and the resulted histograms. In general, Histogram Equalization (HE) based methods could enhance the contrast of the images better than the introduced Fuzzy Inference system. BPDFHE demonstrated the highest efficiency in contrast enhancement and mean brightness preservation of the images, representing great potential for further applications in photographic, electronic and medical image processing.
Ключевые слова: image processing, Matlab, Cancer Cell Migration Images