Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Robotic Manipulator Control Using Neural Networks. A research case study onto a 2-DOF robotic arm
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Mahmoud Al Ashi
ISBN: 9783659289682
Год издания: 2014
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 100
Издательство: LAP LAMBERT Academic Publishing
Цена: 31889 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли экономики:Код товара: 133799
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: The learning capabilities of artificial neural networks (ANNs) to identify and emulate the behavior of complicated nonlinear systems have made them effective tools that can be utilized in intelligent adaptive control strategies. The use of ANNs in the design of trajectory tracking controllers for robotic manipulators is dated back to the 1980s. Due to the flexibility of their structure as well as the continuous development and enhancement of their self-training algorithms, the use of ANNs in the field of robotic manipulator trajectory tracking control is being considered an important research area. This textbook explains in great detail the process of designing an effective controller to enhance the trajectory tracking performance of a two degree of freedom (2-DOF) robotic arm using neural networks. Feed-forward ANNs were used in both model-based and non-model-based control strategies. Since it also includes a deep explanation of the modeling of the 2-DOF robotic arm system including its actuating DC-motors and their control using a PD controller, this textbook can also serve as an effective educational tool for both undergraduate and graduate electrical engineering students.
Ключевые слова: neural networks, neural networks, Backpropagation Algorithm, Robotic Manipulator, trajectory tracking control, computed torque method