Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Assessment of Alzheimer's Disease through sMRI Phase Images. A heuristic approach using state of the art machine learning algorithms
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Ahsan Bin Tufail
ISBN: 9783659535123
Год издания: 2014
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 80
Издательство: LAP LAMBERT Academic Publishing
Цена: 25692 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Classification of patients of different categories of Alzheimer's disease (AD) is a challenging task with subsequent applications in the diagnosis of AD. This task requires careful examination of results by a panel of experts which is usually cumbersome and hard to obtain and is intricate in conventional MRI images due to similar intensities of background pixels and surrounding brain structures. Manual interpretation of results is also difficult and time consuming. There is a need for an accurate and robust method for the classification of initial stages of AD that uses disease non-specific features and requires very little or no intervention of a medical domain expert. In this research, state of the art machine learning algorithms such as Independent Component Analysis, Neural Nets and Support Vector Machine have been used for the classification and assessment of sMRI phase images of initial categories of AD. Obtained results are quite satisfactory is terms of accuracy and robustness of classification of initial categories of AD as well as predicting the influence of different socioeconomic parameters on the rate of progression of AD in its early stages.
Ключевые слова: Feature extraction, artificial neural network, Statistical analysis, Feature extraction, Support Vector Machine, high-speed networks, artificial neural network, Independent Component Analysis, Statistical Learning, K Nearest Neighbour, Biomedical image processing