Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Detection of Non-Melanoma Skin Cancer Using Texture Analysis. Design and Implementation
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Dalia Nabeel,Loay E. George and Nabeel Rasheed
ISBN: 9783659626630
Год издания: 2014
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 148
Издательство: LAP LAMBERT Academic Publishing
Цена: 36982 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:Код товара: 141723
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Today, cancer constitutes a major health problem. Approximately one out of every two men and one out of every three women get cancer at some point during their lifetime. The chance of curing cancer primarily relies on its early diagnosis and the selection of its treatment depends on its malignancy level. Skin cancer is the most common form of human cancer. The annual rates of all forms of skin cancer are increasing each year. This book is aimed to develop a system that determines whether a given skin lesion microscopic image is normal, or benign tumor, or malignant tumor which can be squamous cell carcinoma, or basal cell carcinoma (the two leading skin cancer types).The proposed system passes through two main phases: training phase and testing phase. For both of them, the system implies three main stages (i.e., pre-processing, partitioning & feature extraction).In this research work, two recognition systems have been employed. The first system is based on using minimum distance classification method (MDC) to make recognition decision, while the second was based on the feed forward neural network.
Ключевые слова: Medical Image Analysis, Artificial Neural Network., Medical Image Classification, Skin Cancer Detection, Textural Analysis, Minimum distance classifier