Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Growth properties of complex valued functions. Growth properties of complex valued functions with special reference to maximum terms of entire functions
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Sanjib Kumar Datta and Arup Ratan Das
ISBN: 9783659369964
Год издания: 2015
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 96
Издательство: LAP LAMBERT Academic Publishing
Цена: 31747 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: In 1926 Finnish mathematician Rolf Nevanlinna initiated the value distrib- ution theory of complex valued functions. Actually this theory deals with the study of the fact how an entire or meromorphic function assumes some values and the in?uence of assuming certain values in some speci?c manner on a func- tion. In fact, the well known fundamental theorem of classical algebra is prob- ably the ?rst value distribution theorem. The value distribution theory deals with the various aspects of the behavior of entire and meromorphic functions one of which is the study of comparative growth properties. The present book deals with the measure of growth rates of composite entire and meromorphic functions on the basis of integer translation, estimation of generalized growth properties via maximum terms of composite entire functions as well as those of di¤erential monomials, wronskians, di¤erential polynomials etc. generated by them and growth analysis of iterated entire functions with a treatment of their maximum terms.
Ключевые слова: composition, Growth, order, translation, zero order, Entire function, Meromorphic function, Maximum term, Lower order, Differential Monomial, Wronskian, Differential Polynomial, Iteration