Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Treatment of Singularly Perturberd Differential Difference Equations.
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Diddi Kumaraswamy
ISBN: 9783659383656
Год издания: 2015
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 156
Издательство: LAP LAMBERT Academic Publishing
Цена: 37267 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: In this book, we have discussed the quantitative analysis and stability of methods for numerical solution of the singularly perturbed differential difference equations. The book consists of eight chapters organized into four parts. Part I- consists of chapter 1 which deals with the brief description of singular perturbation problems, basic concept of boundary layer, definition of the singularly perturbed differential-difference equations and survey of literature pertinent to the present study. Part II- comprises of three chapters: chapters 2, 3 and 4 which are devoted to the numerical treatment of singularly perturbed differential-difference equations with delay and advanced shifts.Part III- comprises of three chapters: chapter 5, 6 and 7 which are devoted to the numerical treatment of singularly perturbed differential-difference equations with delay parameter whose solution exhibits boundary layer behaviour. Part IV- consists of chapter 8 which deals with the conclusion and the scope of the future research work in this area. The methods presented in this book for solving singularly perturbed differential-difference equations are observed to be simple, accurate and efficient.
Ключевые слова: Boundary Layer, Numerical Methods, Differential Difference Equations