Ваш любимый книжный интернет-магазин
Перейти на
GlavKniga.SU
Ваш город: Алматы
Ваше местоположение – Алматы
 Да 
От вашего выбора зависит время и стоимость доставки
Корзина: пуста
Авторизация 
  Логин
  
  Пароль
  
Регистрация  Забыли пароль?

Поиск по каталогу 
(строгое соответствие)
ISBN
Фраза в названии или аннотации
Автор
Язык книги
Год издания
с по
Электронный носитель
Тип издания
Вид издания
Отрасли экономики
Отрасли знаний
Сферы деятельности
Надотраслевые технологии
Разделы каталога
худ. литературы

Estimation of Gross Primary Production using Data mining approach. The application in Northeast Thailand using an Artificial Neural Networks method

В наличии
Местонахождение: АлматыСостояние экземпляра: новый
Бумажная
версия
Автор: Watinee Thavorntam and Netnapid Tantemsapya
ISBN: 9783659421129
Год издания: 2015
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 76
Издательство: LAP LAMBERT Academic Publishing
Цена: 21841 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:
Код товара: 145373
Способы доставки в город Алматы *
комплектация (срок до отгрузки) не более 2 рабочих дней
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK)
Курьерская доставка CDEK из города Москва
Доставка Почтой России из города Москва
      Аннотация: The purpose of this book is to improve our understanding of the role of terrestrial vegetation in carbon cycle and its variation under climate variability. A combination between meteorological and remote sensing data using various techniques and software were employed to identify and forecast change in Gross Primary Production (GPP). The vegetation greenness and GPP were obtained from remote sensing data because of the advantages in terms of continuous monitoring and cover the various land cover types. The method used for this research included spatial interpolation, digital image processing, correlation analysis and Artificial Neural Networks (ANNs) for data preparation, analysis and forecasting. This book revealed the advantages of using GPP obtained from the satellite data for continuous monitoring carbon fixing by vegetation. The integration of meteorological and satellite data with the ANNs technique can be used as an alternative method to estimate GPP where the carbon fluxes data from the towers at specific sites is limited.
Ключевые слова: Artificial Neural Networks, climate change, Remote sensing, Gross Primary Production