Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Seasonal Effects on Share Indices. An analysis with artificial neural networks
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Tim-Oliver Martens
ISBN: 9783639789287
Год издания: 2015
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 148
Издательство: AV Akademikerverlag
Цена: 26522 тг
Положить в корзину
Позиции в рубрикаторе
Сферы деятельности:Код товара: 147223
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: No one can predict stock prices. However, there are many theories which imply that recurring seasonal effects could be used to determine the direction of share indices. Many traders have already heard the stock market adage: “Sell in May and go away, but remember to come back in September”. What is with this adage really about, and are there other indications for the existence of recurring seasonal effects which could be used for respective trading strategies? This book deals with eleven different recurring seasonal effects which are frequently referred to in academic writings as well. Artificial neural networks are used to identify these phenomena at eight different underlyings. For underlyings, where a phenomenon could be identified, a trading strategy based on the forecast of artificial neural networks is presented. These strategies use the respective effect to determine the direction of share indices. In order to compare the trading results a comparative strategy is used as a benchmark. It is shown how artificial neural networks could be used to identify recurring seasonal effects and how to create a trading position depending on the signal of these effects.
Ключевые слова: Indicators, trading, Seasonal Effects, Stock Index Anomalies, Faun, Momentum Strategy, Buy and Hold Strategy, Artificial Neural Networks