Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Computational Immunology. Prediction of Antigenic Conformational Epitope Patches and Residues on the Protein 3D Structures
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Khaled Hassan,Amr Badr and Emad Nabil
ISBN: 9783659710971
Год издания: 2015
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 120
Издательство: LAP LAMBERT Academic Publishing
Цена: 32599 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Vaccination is a method of stimulating resistant in the human body to specific diseases using microorganisms (bacteria or viruses) that have been modified or killed. Currently, the available vaccines are composed of killed or life attenuated the whole pathogens before being injected to the human body. Despite the advantages of such vaccines, there are a lot of potential safety problems such as incomplete inactivation of the killed pathogens or the evolution of the attenuated virus. Instead of the entire microbe, subunit vaccines include only the antigens that best stimulate the immune system. This type of vaccine uses epitopes – the very specific parts of the antigen that antibodies or T cells recognize and bind. Identification of epitopes that invoke strong responses from B-cells is one of the key steps in designing effective vaccines against pathogens. In this book, we developed a novel computational method “CBCPRED” to predict the conformational B-cell epitope residues from the target antigen protein structure. In addition, we proposed – PatchTope – A different vision in the identification of the antigenic epitope sites in the antigen structure chain.
Ключевые слова: Immunoinformatics, Kernel methods, B-cell epitope prediction, multiple-instance learning