Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Artificial Expert Systems Applications in Petroleum Engineering. An auxiliary approach for labor intensive and demanding times
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Talal AlMousa
ISBN: 9783659772009
Год издания: 2015
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 188
Издательство: LAP LAMBERT Academic Publishing
Цена: 43243 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:Код товара: 150729
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: This work demonstrates the development and the application of a set of integrated artificial expert systems in the area of forecasting, reservoir evaluation and multilateral well design. The applied method has gradually progressed in degrees of complexity from addressing a preliminary case of volumetric single phase gas reservoirs completed with only dual-laterals towards an expanded form of the same system with varying multi-laterals and reservoir properties to eventually and successfully implementing it to multiphase reservoirs with bottom water drive systems completed with multi-laterals (choice of 2-5 laterals). The developed method and tools cover a wide spectrum of rock and fluid properties spanning tight to conventional sands. The developed approach successfully delivers a total of five distinct artificial expert systems, three of which serve as proxies to the conventional numerical simulator and the other two as inverse-looking solutions, one that addresses the multi-lateral well design problem and the other that estimates critical reservoir properties that can be used at the very least as first estimators in assist history matching problems.
Ключевые слова: Artificial Intelligence, Expert Systems, Petroleum engineering, Reservoir Engineering, Learning Machines