Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Scalability Issues of NER using Multi-Class Support Vector Machines.
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Jyothi Bellary and Keshava Reddy E.
ISBN: 9783659860454
Год издания: 2016
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 124
Издательство: LAP LAMBERT Academic Publishing
Цена: 32741 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:Код товара: 156475
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Named Entity Recognition (NER) is designed to extract and to categorize rigid designators in written text such as proper names, scientific species, and temporary expressions. There has been increasing interest in this area of research since the early 90's. In this book, we present a pattern shifting away from handcrafted rules, and towards machine learning techniques. Still, latest machine learning techniques have a problem with annotated data accessibility, which is a serious drawback in building and keeping large-scale Named Entity Recognition systems. In this book, we present a new model called as Multi class Support Vector Machine for workflow scheduling in cloud. This workflow scheduling provides a framework for scheduling the entity identification with multiclass Support Vector Machine classifier. The algorithm for the scheduling of resources in cloud called as improved allocation, which continuously and vigorously reallocates multiple types of named entities to the cloud resources to fulfill the cost and performance requirements. This book shows how to create a Multi Class SVM classifier for NER system in environment of cloud.
Ключевые слова: Cloud, NER, Support Vector Machines, Workflow Scheduling, Multi Class Classification.