Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Numerical Analysis of Singularly Perturbed Boundary Value Problems.
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Madhu Latha K
ISBN: 9783659883347
Год издания: 2016
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 160
Издательство: LAP LAMBERT Academic Publishing
Цена: 32569 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: In general, any differential equation in which the highest order derivative is multiplied by a small positive parameter is called Singular Perturbation Problem. When we apply the existing standard numerical methods to these singular perturbation problems, we get oscillatory/ unsatisfactorily results. As a result of this, finding solutions of singularly perturbed boundary value problems has become most interesting and challenging task. Thus it is of considerable scientific interest to the researchers to develop simple and efficient computational methods for singularly perturbed two point boundary value problems. In this book, we have proposed and illustrated some simple and efficient numerical techniques for finding the solution of a singularly perturbed two point boundary value problems. This work consists of eight chapters. Chapter 1 deals with definition and survey on singular perturbation problems. Chapters 2 and 3 deals with Fitted methods. In Chapters 4 and 5 we discuss the special methods. Chapter 6 deals with an asymptotic technique. Chapter 7 deals with numerical integration method. Final chapter 8 deals with general conclusion and further scope of research.
Ключевые слова: Boundary Layer, fitting factor, Singular perturbation problems